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Prediction of aqueous solubility of organic salts of diclofenac
using PLS and molecular modeling
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Abstract

Organic salts of diclofenac were predicted by using computed molecular descriptors and multivariate partial least squares
(PLS). The molecular descriptors including binding energy and surface area of salts were calculated by the use of Hyperchem
and ChemPlus QSAR programs for Windows. Other physicochemical properties such as hydrogen acceptor for oxygen atoms,
hydrogen acceptor for nitrogen atoms, hydrogen bond donors, hydrogen bond-forming ability, molecular weight, and log partition
coefficient (logP) of bases were also used as descriptors. Good statistical models were derived that permit simple computational
prediction of salt solubility of a same parent structure. The final models derived hadR2 value= 0.96 and root mean square error
for prediction (RMSEP) values ranging from 0.021 to 0.054 (log scale). Preferably all utilized descriptors in the final models can
readily obtain from the chemical structure of salt and base. Molecular weight of base is one of the important factors associated
with salt solubility. While increased molecular weight of base, surface area of salt and hydrogen bonding ability of base increase
solubility, and increased binding energy and logP of base have negative effect on salt solubility.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Aqueous drug solubility is one of the most impor-
tant factors in the process of drug discovery and de-
velopment from molecular design to pharmaceutical
formulation and biopharmacy. For weak electrolyte
drugs, salt formation that is a much simpler method
than complex molecular modifications, is a common
approach to improve solubility. The use of differ-
ent counter-ions in salt formation can result in salts
with different physicochemical properties that are not
always predictable without experimentation. Accord-
ingly various organic and inorganic salts of acidic

∗ Tel.: +66-74-288864; fax:+66-74-428239.
E-mail address: tvimon@ratree.psu.ac.th (V. Tantishaiyakul).

and basic drugs have been prepared and their physic-
ochemical properties investigated for salt selections
(O’Connor and Corrigan, 2001; Forbes et al., 1995).

The ability to predict the aqueous solubility of
salts can speed up the process of drug development.
Various predictions of aqueous solubility of organic
compounds using quantitative structure–property re-
lationship (QSPR) have been reported (Yaffe et al.,
2001; Chen et al., 2002; Gao et al., 2002; Jorgensen
and Duffy, 2002). However, QSPR has rarely been
used in the prediction of salts. Recently, the correla-
tion of aqueous solubility of salts of benzylamine with
experimental parameters was investigated byParshad
et al. (2002). The most significant descriptors included
Charton’s steric parameter, Hansch hydrophobic pa-
rameter, molecular weight and intrinsic solubility.
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It was reported that no correlation was found be-
tween diclofenac salt solubility and any one of the
parameters pKa, hydrophilicity, or melting point of
counter-ions (O’Connor and Corrigan, 2001). One
important factor that might govern aqueous solubility
of salt/ion pair is the electrostatic interaction between
cationic and anionic species of the ion pair. It is thus
interesting to investigate the significance of binding
energy of the ion pair and employ it as one of the de-
scriptors for predicting salt solubility. Diclofenac, an
acidic drug (pKa 3.80 at 25◦C) with very low aque-
ous solubility (6× 10−5 M at 25◦C) in the unionized
form (Chiarini et al., 1984), is used as a model drug.
The calculated binding energy and surface area of

Table 1
Salt solubilities, physicochemical and molecular parameters of salts and bases

Number Salt Sa logSb Bind Ec HAOd HANe HDf HBg Sareah c logP Bi MW Bj MP Bk

1 META 94.98 1.98 121.43 0 1 2 3 529.12 −0.664 31.05 173.00
2 DMETA 132.17 2.12 116.69 0 1 1 2 569.46 −0.518 45.05 178.50
3 TMETA 166.44 2.22 113.87 0 1 0 1 572.89 0.048 59.11 212.50
4 TTMETA 198.11 2.30 104.03 0 0 0 0 582.33 – 74.14 242.50
5 DETA 198.11 2.30 105.58 0 1 1 2 605.91 0.54 73.13 158.00
6 DPRA 254.70 2.41 117.31 0 1 1 2 670.37 1.598 101.19 168.50
7 DBUA 303.88 2.48 115.25 0 1 1 2 713.38 2.656 129.24 145.50
8 P 193.68 2.29 117.55 0 1 1 2 597.45 0.106 71.12 111.00
9 PP 223.35 2.35 112.27 0 1 1 2 624.4 0.665 85.14 184.50

10 M 233.34 2.37 115.07 2 1 1 4 608.96 −0.646 87.12 171.00
11 PZ 225.30 2.35 119.11 0 2 2 4 618.05−0.8 86.13 205.00
12 MEP 223.35 2.35 112.57 0 1 0 1 624.97 0.842 85.14 209.50
13 MEPP 250.91 2.40 108.94 0 1 0 1 614.44 1.401 99.17 86.00
14 MEM 254.57 2.41 114.43 2 1 0 3 614.92 0.132 101.14 106.50
15 MEPZ 252.67 2.40 111.06 0 2 1 3 625.63−0.022 100.16 163.50
16 MEA 171.02 2.23 113.28 2 1 3 6 555.54 −1.295 61.08 145.00
17 DEA 262.04 2.42 118.01 4 1 3 8 616.53 −1.463 105.13 125.50
18 TEA 335.03 2.53 114.47 6 1 3 10 609.64−1.586 149.19 133.50
19 TRIS 290.33 2.46 119.04 6 1 5 12 608.81−2.908 121.13 195.00
20 HEP 280.05 2.45 110.61 2 1 1 4 649.47 0.263 115.17 103.00
21 HEPP 303.78 2.48 108.72 2 1 1 4 643.78 0.822 129.2 123.00
22 HEM 307.01 2.49 110.49 4 1 1 6 615.26 −0.447 131.17 91.00
23 HEPZ 305.40 2.48 113.99 2 2 2 6 620.82−0.601 130.18 103.00

a Salt solubility (mM).
b Log of salt solubility.
c Binding energy of salt.
d Number of hydrogen bond acceptor oxygen atoms.
e Number of hydrogen bond acceptor nitrogen atoms.
f Number of hydrogen bond donor atoms.
g Hydrogen bond formation ability.
h Surface area of salts (Å2).
i Calculated logP of bases.
j Molecular weight of bases.
k Melting point of bases.

salts and other physicochemical properties of organic
bases were related to diclofenac salt solubility us-
ing the partial least squares or projection to latent
structures (PLS) regression.

2. Methods

2.1. Data set selection

Aqueous solubility data for 23 diclofenac salts were
taken fromFini et al. (1996). These values were con-
verted from milligram per milliliter to logarithm of
salt solubility in millimoles (logS). These salts were
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prepared from linear alkylamine: methyl (META),
dimethyl (DMETA), trimethyl (TMETA), diethyl
(DETA), dipropyl (DPRA), dibutyl (DBUA) amines,
tetramethyl ammonium (TTMETA); cyclic alky-
lamine: pirrolidine (P), piperidine (PP), morpholine
(M), piperazine (PZ),N-methyl pyrrolidine (MEP),
N-methyl piperidine (MEPP),N-methyl morpho-
line (MEM), N-methyl piperazine (MEPZ); hydroxy
alkylamine: monoethanol (MEA), diethanol (DEA),
triethanol (TEA), tris(hydroxyethyl) aminomethanol
(TRIS), N-(2-hydroxyethyl) pyrrolidine (HEP),N-(2-
hydroxyethyl) piperidine (HEPP),N-(2-hydroxyethyl)
morpholine (HEM), N-(2-hydroxyethyl) piperazine
(HEPZ). All of these organic salts and their solubili-
ties are presented inTable 1.

2.2. Molecular modeling and molecular property
calculation

Molecular modeling calculations were performed
using HyperChem 5.1 for Windows (Hypercube, FL,
USA). The MM+ molecular mechanics force field
was first run to get close to the optimized geome-
try. Molecular mechanics calculations treat atoms as
Newtonian particles interacting through a potential
energy function. The potential energies depend on
bond lengths, bond angles, torsion angles, and non-
bonded interactions (including van der Waals forces,
electrostatic interactions, and hydrogen bonds). In
these calculations, the forces on atoms are functions
of atomic position. The conformation obtained from
molecular mechanics was subjected to a refined ge-
ometry optimization using the PM3 semiempirical
quantum chemistry. Semiempirical calculations solve
the Schrödinger equation to describe the electronic
properties of atoms and molecules. To simplify and
shorten these calculations, semiempirical methods
make many simplifications, calculating only for va-
lence electrons; neglecting the integrals for certain
interactions; using standard, non-optimized, electron
orbital basis functions. It was reported that calcula-
tion result of PM3 semiempirical molecular method
and HF/6-31G base function of ab initio molecule
orbital method are very close (Lu et al., 1998b). The
PM3 method has been previously used for geome-
try optimization in various studies (Lu et al., 1998a;
Huibers, 1999; Tantishaiyakul, 2001). To shorten the
time to calculate on a computer, binding energy of

Fig. 1. Salt/ion pair formation constituted by diclofenac anion and
methylammonium cation.

diclofenac salt was computed in vacuo using the PM3
method.

Binding energy was calculated as described by
Aleman and Zanuy (2000)andMadhan et al. (2001).
In brief, the salt/ion pair constituted by the diclofenac
anion and the positively charged base (Fig. 1) was
calculated to obtain the total energy of ion pair
(TEion−pair). The interaction energy of the ion pair
(Einteraction) was calculated as the difference between
the total energy of the ion pair and the sum of the
energy of diclofenac (Ediclofenac) and organic base
(Ebase). The negative of the interaction energy is
termed the binding energy (Ebinding):

Einteraction= TEion−pair − [Ediclofenac+ Ebase]

Ebinding = −Einteraction

The ChemPlus QSAR Properties 1.5 (Hypercube, FL,
USA) was used for further calculation of surface area
of the salt/ion pair.

Hydrogen bond-forming ability (HB) of the whole
molecule of base is the sum of hydrogen bond numbers
of various groups including oxygen–hydrogen bond-
ing acceptor (HAO), nitrogen–hydrogen bonding ac-
ceptor (HAN), and hydrogen bonding donor (HD) and
was calculated as described byXia et al. (1998). The
logP value of base was calculated using theclogP pro-
gram (Biobyte, CA, USA) which calculates directly
from the molecular structure.

2.3. Statistical analysis

A principal components analysis (PCA) was per-
formed on the data set consisting of all descriptors. A
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PCA is a projection method for extracting the infor-
mation contained in the descriptor matrix. The prin-
ciple of PCA is to find the directions in space along
which the distance between data points is the largest.
This can be translated as finding the linear combina-
tions of the initial variables that contribute most to
making the samples different from each other. These
directions are called principal components (PCs).

The relationship between the experimentally deter-
mined solubility of organic salts of diclofenac and the
descriptors was subsequently determined using PLS1
analysis. PLS is a bilinear modeling method where in-
formation in the descriptor matrixX is projected onto a
small number of underlying (“latent”) variables called
PLS components. These PLS components are similar
to principal components, and will also be referred to
as PCs. The matrixY is simultaneously used in esti-
mating the “latent” variables inX that will be most
relevant for predicting theY variables.

The number of significant PCs for the PLS algo-
rithm is determined using the cross-validation method.
With cross-validation, some samples are kept out of
the calibration and used for prediction. The process
is repeated so that all samples are kept out once.
The values for the left out compound is then pre-
dicted and compared with the known value. The pre-
diction error sum of squares (PRESS) obtained in the
cross-validation is calculated each time that a new PC
is added to the model.Haaland and Thomas criterion
(1988)was applied for the selection of the optimum
number of PCs. This involves the comparison of the
PRESS from models (h models) with the model which
involves the number of PCs yielding the minimum
PRESS (h∗ model). TheF-statistic is used to make the
significance determination with a value ofα = 0.25.

A descriptor selection was determined according to
variables important in the projection and loading plot.
Insignificant descriptors were left out of the model
and their importance for predictivity determined by a
cross-validation procedure. If the predictivity of the
model increased, the descriptor in question was re-
moved from the model, otherwise the descriptor was
kept in the model.

The software package used for conducting both
PCA and PLS analysis was Unscrambler 6.01
(Computer-Aided Modelling A/S, Trondheim, Nor-
way). All variables were centered prior to PLS pro-
cessing. Four analyses were performed: one on a

training set of 16 salts and three others on the entire
data set of 23 salts.

3. Results and discussion

The data set used consists of 23 organic salts
of diclofenac with solubility ranging from 94.98 to
335.03 mM. All the descriptors used and salt solubil-
ity are listed inTable 1.

In PCA analysis, the two first PCs account for ap-
proximately 91% of the variance. Salts are uniformly
distributed in the four quadrants of a score plot, sug-
gesting that molecular diversity of the salts is reason-
able. Molecular weight of bases and surface area of
salts are the most important variables.

The goodness-of-fit of PLS model can be expressed
as a root mean square error (RMSE)

R.M.S.E. =
√√√√1

n

N∑
i=1

(ŷi − yi)2

wherêyi andyi represent the calculated and the ex-
perimental value of salt solubility, respectively, andn
is the number of samples. The value of RMSE is an
indication of the average error in the analysis for each
set. The results of all models built from PLS analyses
are summarized inTable 2. The values for the PLS co-
efficients are presented inTable 3. Initially, the 23 salts
were used as a training set and all 9 descriptors were
included to build the model (model 1). The resulting
PLS analysis yielded a statistically acceptable model
containing 3 PCs withR2 = 0.969, Q2 = 0.937. In
general, the use of the smallest possible number of
significant descriptors that yields an acceptable model
is recommended. To obtain a model containing fewer
descriptors, HAN, the least important variable was
thus excluded from the model. The resulting model
(model 2) shows the overall statistics similar to model
1. To focus on a few important variables, the de-
scriptors in model 2 were further reduced. Removing
melting point of base and HD resulted in model 3
with a slight statistical improvement with respect to
cross-validated RMSE value. However, model 3 is the
most applicable model since it contains fewer vari-
ables and all the utilized descriptors can be obtained
directly from the molecular structure of salts and
bases.
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Table 2
PLS statistics of the derived PLS models

Model R2a Q2b NPC
c NTR

d Fe P RMSETR
f RMSECV

g NTE
h RMSEP.i

1 0.969 0.937 3 23 197.97 <0.001 3.16E–02 4.47E–02
2 0.969 0.937 3 23 197.97 <0.001 3.15E–02 4.47E–02
3 0.968 0.940 2 23 302.50 <0.001 3.18E–02 4.39E–02
4 0.963 0.914 2 16 169.18 <0.001 3.55E–02 5.40E–02 7 2.13E–02

a Calibration correlation coefficient.
b Cross-validated correlation coefficient.
c Number of principal components.
d Number of salts in the training set.
e F-value.
f Root mean square error for calibration.
g Root mean square error for validation.
h Number of salts in the test set.
i Root mean square error for test set.

The developed salt solubility model was evaluated
by applying an external test set. The training set con-
sisted of 16 salts was selected to cover salts that span
the variations both in variable descriptors and solubil-
ity. The remaining 7 salts were used as an external test
set to investigate the predictive power of the derived
model. The built model (model 4) is statistically sat-
isfactory withR2 = 0.963,Q2 = 0.914,F = 169.18,
RMSE = 0.036, andP < 0.001. The predictive abil-
ity of model 4 is favorable with RMSE for the test set
of 0.021. The experimental and calculated/predicted
solubility values for models 3 and 4 are summarized
in Table 4.

According to the PLS analyses, the most important
descriptor influencing the model is molecular weight
of the base. In contrast to the solubility of single com-

Table 3
Regression coefficients of PLS models

Descriptors Model 1 Model 2 Model 3 Model 4

Molecular weight of base 3.67E−03 3.67E−03 3.60E−03 3.48E−03
Binding energy of salt −3.27E−04 −3.27E−04 −2.58E−04 −3.66E−04
HAOa 2.69E−04 2.69E−04 2.54E−04 2.19E−04
HANb 4.62E−06 – – –
HDc 7.23E−05 7.23E−05 – –
HBd 3.45E−04 3.45E−04 3.25E−04 2.58E−04
c logP of base −1.48E-04 −1.48E−04 −1.06E−04 −9.49E−05
Surface area of salt 5.65E−04 5.65E−04 5.81E−04 5.86E−04
Melting point of base 9.57E−05 9.57E−05 – –

a Number of hydrogen bond acceptor oxygen atoms.
b Number of hydrogen bond acceptor nitrogen atoms.
c Number of hydrogen bond donor atoms.
d Hydrogen bond formation ability.

pounds, in this study salt solubility surprisingly in-
creases with the increasing size of bases. To gain an
understanding of this consequence, the interactions of
salt solubility should be considered. Typically, when
salts dissolve in a solvent, two processes take place.
Bonds are broken between the ions, and the detached
solute species are then dispersed throughout the sol-
vent medium. The solute species becomes solvated.
Thus, for dissolution to occur the forces that bind
the pure substance together must be overcome by the
forces of solvent–solute interactions. The steric effect
from molecular size of the base might be one factor
that decreases the binding force of the salt, thereby in-
creasing the solubility. In addition to molecular weight
of the base, surface area of the salt also yields the
same effect on salt solubility. Binding energy of the
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Table 4
Experimental, calculated and predicted solubility of salts

No Salt Experimentala PLS model of solubility (mM)b

3 4

Calculated Calculatedc Predictedd

1 META 1.98 2.08 2.08
2 DMETA 2.12 2.15 2.16
3 TMETA 2.22 2.21 2.21
4 TTMETA 2.30 2.27 2.27
5 DETA 2.30 2.28 2.28
6 DPRA 2.41 2.42 2.41
7 DBUA 2.48 2.54 2.54
8 P 2.29 2.26 2.26
9 PP 2.35 2.33 2.33

10 M 2.37 2.33 2.33
11 PZ 2.35 2.33 2.33
12 MEP 2.35 2.33 2.33
13 MEPP 2.40 2.38 2.37
14 MEM 2.41 2.38 2.38
15 MEPZ 2.40 2.39 2.38
16 MEA 2.23 2.21 2.21
17 DEA 2.42 2.40 2.40
18 TEA 2.53 2.56 2.55
19 TRIS 2.46 2.46 2.45
20 HEP 2.45 2.46 2.45
21 HEPP 2.48 2.50 2.50
22 HEM 2.49 2.50 2.49
23 HEPZ 2.48 2.49 2.49

a Log of experimental solubility (mM).
b PLS models: 3= based on all salts, 4= based on the selected training set of salts.
c Log of calculated/fitted solubility (mM) for the training set of salts.
d Log of predicted solubility (mM) for test set of salts.

ion pair of a salt, however, contributes negatively to
salt solubility. As the binding energy of the ion pair
increases, higher forces are needed for breaking bonds
between the ions, resulting in lower salt solubilities.
Hydrogen bond descriptors from bases such as HAO
or HB can increase the binding interaction between
acidic anion and its cation; however, they can also in-
teract with water molecules. The result obtained from
PLS regression indicates the positive effect of HAO
and HB on the solubility of salt. Water, which is a po-
lar solvent, can better interact with polar solutes, the
lipophilicity of base (c logP) therefore has a negative
influence on the salt solubility as expected.

In conclusion, derived PLS models with good
predictability for organic salt of the same parent
compound have been developed in this study. These
statistical models are based on simple computed

molecular descriptors which account for three aspects
of compounds, namely electronic, steric and hy-
drophobic effects. These obtainable descriptors con-
sist of both typical variables for predicting of single
compound solubility, such as size and hydrophobic-
ity/hydrophilicity, and also variables from two species
including binding energy and surface area of salt.

References

Aleman, C., Zanuy, D., 2000. A quantum mechanical study of
the ionic interactions in model compounds of polyelectrolite-
surfactant complexes derived from polypeptides. Chem. Phys.
Lett. 319, 318–326.

Chen, X., Cho, S.J., Venkatesh, S., 2002. Prediction of aqueous
solubility of organic compounds using a quantitative structure-
property relationship. J. Pharm. Sci. 91, 1838–1852.



V. Tantishaiyakul / International Journal of Pharmaceutics 275 (2004) 133–139 139

Chiarini, A., Tartarini, A., Fini, A., 1984. pH-solubility relationship
and partition coefficients for some anti-inflammatory
arylaliphatic acids. Arch. Pharm. (Weinheim.) 317, 268–
273.

Fini, A., Fazio, G., Hervas, M.F., Holgado, M.A., Rabasco, A.M.,
1996. Factors governing the dissolution of diclofenac salts.
Eur. J. Pharm. Sci. 4, 231–238.

Forbes, R.T., York, P., Davidson, J.R., 1995. Dissolution kinetics
and solubilities ofp-aminosalicylic acid and its salts. Int. J.
Pharm. 126, 199–208.

Gao, H., Shanmugasundaram, V., Lee, P., 2002. Estimation of
aqueous solubility of organic compounds with QSPR approach.
Pharm. Res. 19, 497–503.

Haaland, D.M., Thomas, E.V., 1988. Partial Least-Squares methods
for spectral analyses. 1. Relation to other quantitative
calibration methods and the extraction of qualitative
information. Anal. Chem. 60, 1193–1202.

Huibers, P.D.T., 1999. Quantum-chemical calculations of the
charge distribution in ionic surfactants. Langmuir 15, 7546–
7550.

Jorgensen, W.L., Duffy, E.M., 2002. Prediction of drug solubility
from structure. Adv. Drug. Deliv. Rev. 54, 355–366.

Lu, L., Chen, C., Sun, K., 1998a. Theoretical study of fullerene
derivatives: C28H4 and C28X4 cluster molecules. Int. J. Quant.
Chem. 67, 187–197.

Lu, L., Chen, C., Sun, K., 1998b. Theoretical study of fullerene
derivatives: C40H4 and C40X4 cluster molecules. Int. J. Quant.
Chem. 68, 273–284.

Madhan, B., Thanikaivelan, P., Subramanian, V., Rao, J.R., Nair,
B.U., Ramasami, T., 2001. Molecular mechanics and dynamics
studies on the interaction of gallic acid with collagen-like
peptides. Chem. Phys. Lett. 346, 334–340.

O’Connor, K.M., Corrigan, O.I., 2001. Preparation and
characterisation of a range of diclofenac. Int. J. Pharm. 226,
163–179.

Parshad, H., Frydenvang, K., Liljefors, T., Larsen, C.S., 2002.
Correlation of aqueous solubility of salts of benzylamine
with experimentally and theoretically derived parameters: a
multivariate data analysis approach. Int. J. Pharm. 237, 193–
207.

Tantishaiyakul, V., 2001. Prediction of caco-2 cell permeability
using partial least squares multivariate analysis. Pharmazie 56,
407–411.

Xia, C.Q., Yang, J.J., Ren, S., Lien, E.J., 1998. QSAR analysis of
polyamine transport inhibitors in L1210 cells. J. Drug Target.
6, 65–77.

Yaffe, D., Cohen, Y., Epinosa, G., Arenas, A., Giralt, F., 2001.
A fuzzy ARTMAP based on quantitative structure-property
relationships (QSPRs) for predicting aqueous solubility of
organic compounds. J. Chem. Inf. Comput. Sci. 41, 1177–1207.


	Prediction of aqueous solubility of organic salts of diclofenac using PLS and molecular modeling
	Introduction
	Methods
	Data set selection
	Molecular modeling and molecular property calculation
	Statistical analysis

	Results and discussion
	References


